
Departamento de Electrónica, Telecomunicações e Informática
Universidade de Aveiro

Explorer 2022
Rules and Technical Specifications

(March, 2022)

2 CONTENTS

Contents

1 Introduction 3

2 Simulation environment 3

3 Robot Body 4

3.1 Sensors . 4

3.2 Actuators . 5

3.3 Buttons . 6

4 Competing scenario 6

5 Competition 7

5.1 Computational structure . 7

5.2 Challenge . 7

5.3 Competition structure . 7

5.4 Scoring . 8

5.5 Ranking . 8

5.6 Panel of judges . 8

5.7 Referee . 8

5.8 Abnormal circumstances . 9

6 Simulation parameters 9

7 Simulation models 9

8 Communication Protocols 10

8.1 Registry . 11

8.2 Actuating orders . 11

8.3 Sensor data . 11

3

1 Introduction

This document describes the rules and technical specifications applicable to the Explorer 2022 edition, called Maze
explorer.

Explorer is a robotic competition, which takes place in a simulation environment running in a network of computers.
The simulation system creates a virtual maze, which the competing robots have to solve. The maze is built on a grid
of squared cells, being one of them defined as the starting cell and another as the target cell.

The simulation system also creates the virtual bodies of the robots. All virtual robots have the same kind of body. It is
composed of a circular base, equipped with sensors, actuators, and command buttons.

Participants must provide the software, referred to as the agent, that controls the movement of a virtual robot, in
order to acomplished the competition goal. The simulator estimates sensor measures which are then sent to the agent.
Reversely, it receives and applies actuating orders coming from the agent. Thus, the agent acts as the brain of the
robot.

The challenge in the 2022 edition of Explorer is as follows. At start, the robot is placed in the center of an unknown
starting cell. It must explore the maze in order to locate the target cell, while constructing a representation of the maze
explored so far. Then, it must return back to the starting cell, through the possible shortest path. Score depends on
fulfilment of challenge goals and on penalties suffered.

2 Simulation environment

The virtual system that supports Explorer contest is based on a distributed architecture, where 3 different type of
applications enter into play: the simulator, the visualizer, and the agents (see figure 1).

The simulator is responsible for:

• Implementing the virtual bodies of the robots.

• Estimating sensor measurements and sending them to the corresponding agent.

• Moving robots within the maze, according to orders received from corresponding agent and taking into account
environment restrictions. For instance, a robot can not move through a wall.

• Updating agent score, taking into account the fulfilled goals and applied penalties.

• Sending scores and robots positions to the visualizer.

• Making available a control panel to start/restart and stop the competition.

Agent

Agent

Agent

Simulator Visualizer

...

Figure 1: Overview of simulation system.

4 3 ROBOT BODY

The visualizer is responsible for:

• Graphically showing robots in competition maze, including their states and scores.

• Making available a control panel to start/restart and stop the competition.

The simulation system is discrete and time-driven. In each time step the simulator sends sensor measurements to
agents, receives actuating orders, applies them, and updates scores. For the Explorer 2022 edition the cycle time is 50
milliseconds.

All elements into play, namely maze and robots, are virtual, thus there is no need for a real length unit. Hence, the
simulation environment uses um as the unit of length, which corresponds to the robot diameter. All time intervals are
measured as multiples of the cycle time. Thus, the unit of time, denoted as ut, represents the cycle time.

3 Robot Body

Bodies of the virtual robots have a circular shape, 1 um wide, and are equipped with sensors, actuators and command
buttons (see figure 2).

3.1 Sensors

Sensor elements in each robot include: 4 obstacle sensors, 1 compass, 1 bumper (collision sensor), 1 ground sensor
per target area, and 1 GPS sensor. Some sensors are always available, namely the bumper. The availability of the
others depends on the competition challenges. Some sensors may not be available or may only be available on request
with a limit number of requests per cycle.

Sensor models try to represent real devices to some extent. On one side, their measures are noisy. On the other side,
the reading of sensors is affected by n time units latency, where n depends on the particular sensor. This means that
the respective values are about n simulation cycles old, that is, when an agent receives a value it represents a measure
performed n cycles ago.

A description for each kind of sensor follows. A summary is provided in table 1.

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

60◦

60◦

60◦

60◦
Obstacle sensor

Motor and wheel Motor and wheel

Obstacle sensor

Obstacle sensor

Collision sensor

60◦ 60◦

1 um

Obstacle sensor

Figure 2: Body of the virtual robot.

3.2 Actuators 5

Table 1: Sensors characterization. On request sensors are limited to a maximum of 4 per cycle.

Sensor Range Resolution Noise type Deviation Latency On request
Obstacle sensor [0.0, 100.0] 0.1 additive 0.1 0 yes
Compass [−180,+180] 1 additive 2.0 4 yes
GPS (position) 0.1 additive 0.5 0 no
Bumper Yes/No N/A 0 no
Ground sensor Yes/No N/A 0 yes

• Obstacle sensors measure distances between the robot and its surrounding obstacles, including other robots.
They have predefined positions, but can be repositioned on robot initialization, however only at the robot pe-
riphery. Figure 2 shows their default positions.

Each sensor has a 60 degrees aperture angle. The measure is inversely proportional to the lowest distance to
the detected obstacles, and ranges between 0.0 e 100.0, with a resolution of 0.1. Noise is added to the ideal
measure following a normal (Gaussian) distribution with mean 0 (zero) and standard deviation 0.1. Obstacle
sensors have a latency of 0 time units.

• The compass sensor is positioned in the center of the robot and measures its angular position with respect to the
virtual North. It is assumed that the X (horizontal) positive semi-axis points to the virtual north.

Its measures range from −180 to +180 degrees, with a 1 degree resolution. Noise is added to the ideal measure
following a normal (Gaussian) distribution with mean 0 (zero) and standard deviation 2.0. The compass has a
latency of 4 time units.

• The GPS sensor is a device that returns the position of the robot in the world, with resolution 0.1. It is located
at the robot center. When the simulation starts, the maze is randomly positioned in the world, being the origin
coordinates (the left, bottom corner) assigned a pair of values in the range 0–1000. Noise can be added to the
ideal measures following a normal (Gaussian) distribution with mean 0 (zero) and standard deviation 0.5. It has
a latency of 0 time units. Even if the GPS sensor is not available during competition, it may be used during
development to test the localization algorithm.

• The bumper corresponds to a ring placed around the robot. It acts as a boolean variable enabled whenever there
is a collision, with a latency of 0 time units.

• The ground sensors are devices that detects if the robot is completely over a target area . It has a latency of 0
time units.

3.2 Actuators

The virtual robot has 2 motors and 3 signalling leds (lights). The motors try to represent, although roughly, real motors.
Thus, they have inertia and noise. A description for each kind of actuator follows. A summary is provided in table 2.

• The 2 motors drive two wheels, placed as shown in figure 2. Robot movement depends on the power applied to
the two motors. Both translational and rotational movements are possible. If the same power values are applied

Table 2: Actuators characterization.

Actuator Range Resolution Noise type Standard deviation
Motor [−0.15,+0.15] 0.001 multiplicative 1.5%
end led On/Off . N/A .
returning led On/Off . N/A .

6 4 COMPETING SCENARIO

Figure 3: A competition scenario.

to both motors the robot moves along its frontal axis. If the power values are symmetric the robot rotates around
its center.

The power accepted by motors ranges between −0.15 e +0.15, with resolution 0.001. However this is not the
power applied to wheels because of inertia and noise. See section 7 for a description of the input/output power
relationship, that is, the relationship between power requested by agents and power applied to wheels. The noise
is multiplicative, following a normal (Gaussian) distribution with mean and standard deviation equal to 1 and
1.5%, respectively.

A power order applied to a motor keeps in effect until a new order is given. For instance, if an agent applies a
given power to a motor at a given time step, that power will be continuously applied in the following time steps
until a new power order is sent by the agent.

• The 2 leds are named returning led and end led and are used to signal the attainment of goals. The way they
must be used depends on the competition challenge. See section 5 for details.

3.3 Buttons

Each virtual robot is equipped with 2 buttons, named Start and Stop . They are used by the simulator to start and
interrupt competition. The Start button is pressed to start a competition or to restart a previously interrupted one. The
Stop button is pressed when a competition is interrupted. Agents must read the status of these buttons and must act
accordingly.

4 Competing scenario

The competition scenario (see figure 3 for an example) is composed of a grid of squared cells, outer delimited, with a
starting cell (where the robot is in the figure) and a target cell (the cheese in the figure) inside. Wall segments can be
placed between adjacent cells, to hamper the robot movements, creating the maze. A target cell is a cell that should be
reached by the robot and has a ground material identifiable by a ground sensor. The starting cell is the departing cell
of the robot and is indistinguishable from others, unless if it is also a target cell. The following rules are observed:

1. The side of each cell measures 2um.

2. The maze maximum dimensions are 7 cells high and 14 cells wide.

7

3. All walls have a thickness of 0.1um.

4. The robot heading at start is always 0 or 180 degrees.

5. Any target cell is reachable from the starting cell.

5 Competition

5.1 Computational structure

Competition takes place in a network of computers. One, typically operating in Linux, is used to run the simulator and
the visualizer. Participants use their own computer to run their agent. They can operate in Windows, Linux or other
OS with IP stack, Ethernet connection and the appropriate libraries.

5.2 Challenge

The main objective is the development of a robotic agent capable of commanding a mobile robot in a semi-structured
environment, making it move to a target cell, whose location is unknown in advance, and then return back to the
starting cell through the shortest possible path. A robot can visit the target cell several times before it decides to return
back to its starting cell. However, when it decides to do so, it must turn on the returning led inside the target cell.
Then, when it reaches the starting cell , it must turn on the end led and stop.

In order to better fulfill the challenge objectives, participants must be aware that:

• Information from the obstacle sensors has to be used in order to avoid and follow the walls.

• The target position can be detected using the ground sensor, as the value measured by this sensor changes when
the robot is completely inside this region.

• The starting cell can not be detected by any special sensor.

• There are no encoder sensors in the wheels, but the robot pose may be estimated using the motor model and
the velocity commands sent to the simulation. The grid structure of the maze may also be used to improve
self-localization.

• To deal with the noise in sensors, some kind of filtering should be used.

• Some way to represent the environment or the possible navigation paths should be used, in order to compute the
shortest path to the starting cell.

5.3 Competition structure

Competition unfolds into 3 legs. In the first and second legs all teams participate. The three better qualified teams
after the second leg go to the final one.

At each leg, every team participates in one single trial. At each trial, the robot competes alone.

Game scenario can differ from leg to leg, but it is the same during all trials throughout a leg. The scenarios are
unknown in advance to the teams.

8 5 COMPETITION

5.4 Scoring

At the end of each trial a score is assigned to the participant team. The computed score takes into account the
accomplishment of goals and the incurred penalties. The following rules are applied:

1. At the beginning 200 points is assigned to the robot.

2. Whenever the robot collides with an obstacle, 2 points are added to its score.

3. When the target area is correctly reached — turning on the visiting led — an amount of points is subtracted
to the robot score. The amount is 100 if the visiting led is turned on at (or before) key time. After key time, it
ranges linearly from 100 (visiting led turned on at key time) to 50 (visiting led turned on at total time).

• Turning on the visiting led led outside the target area forces the end of robot competition, keeping the
score held at that time.

4. While returning, and besides penalties incurred for collisions, the score of a robot changes according to its
distance to its starting spot .

• Let D be the shortest distance from the target area to the starting spot and let d be the actual distance of
the robot to the starting spot . The portion of the score related to the distance to the starting spot is given
by 100∗d

D

5. No robot can score more than 250 points. A robot is assigned that score if it is excluded by judge decision or
finishes with a higher value.

Besides score, each team is also assigned a time, used as a tie-breaking criterion. If the robot has reached the
target area , it is equal to the time taken to get there; otherwise, it is equal to the total time for that trial.

5.5 Ranking

Ranking is defined by the ascending order of assigned scores. In case of equal scores, the tiebreaker is based on the
assigned times.

Along the competition, they are defined as follows:

1. At the end of the first leg, each team is assigned the score and the time obtained in its trial. (All agents pass to
the second leg.)

2. At the end of the second leg, each team is assigned a score, and a time, which are equal to the sum of the scores
and times obtained in the first and second legs, respectively. (Only the 3 better qualified agents pass to the third
(final) leg.)

3. For the final ranking only the score and the time obtained at the final leg count.

5.6 Panel of judges

The panel of judges is the maximum authority in terms of rules interpretation and application. Their mission is to
verify rules observation by robots and to aid referees in their decisions.

Participants can not appeal against panel decisions. The panel is designated by the MicroRato Organization.

5.7 Referee

The referee controls the competition and ensures contest rules observance. The referee can interrupt the competition
to consult the panel of judges. In all omitted issues he/she must, compulsorily, consult the panel of judges.

The referee is designated by the MicroRato Organization.

5.8 Abnormal circumstances 9

5.8 Abnormal circumstances

As a consequence of an abnormal situation a referee can interrupt the competition at any time in order to consult the
panel of judges. When this happens, all agents are notified through the Stop button and robots are immobilized in the
simulator scope. Time is also frozen.

The panel can decide to resume, finish, or repeat the current trial. The process of resuming a previously interrupted
competition is controlled by the referee, being the agents notified through the Start button. Spacial and angular
positions of the robots at restart time are exactly the same they had at interrupt time.

6 Simulation parameters

Configuring the simulator for a leg is done passing it the following elements:

• Cycle time and total competition time.

• Noise levels for sensors and motors.

• Maze description and starting cell coordinates.

Configuration files are written based on XML descriptions. There are 3 main XML tags, Parameters, Lab and
Grid. Since XML tags are self-explanatory, we just give an example for each case.

<Grid>
<Position X="3" Y="5" Dir="0"/>

<Grid>

<Parameters SimTime="1800" KeyTime="1350" CycleTime="50"
CompassNoise="2.0" ObstacleNoise="0.1"
GPS="Off"
Lab="lab.xml" Grid="grid.xml"/>

<Lab Name="Default LAB" Height="14" Width="28">
<Target X="25" Y="7" Radius="1"/>
<Row Pos="12" Pattern=" | | | | "/>
<Row Pos="11" Pattern=" +--+ +--+--+ + +--+--+--+--+ +--+--"/>
<Row Pos="10" Pattern=" | | | | "/>
<Row Pos="9" Pattern="--+--+ +--+ +--+--+--+ +--+--+ +--+ "/>
<Row Pos="8" Pattern=" | | | | | | "/>
<Row Pos="7" Pattern="--+--+--+ +--+ +--+--+--+ + + +--+ "/>
<Row Pos="6" Pattern=" | "/>
<Row Pos="5" Pattern=" +--+--+--+--+--+--+ + +--+ +--+--+--"/>
<Row Pos="4" Pattern=" | | | | | "/>
<Row Pos="3" Pattern=" +--+ +--+--+--+--+ +--+ + +--+ + "/>
<Row Pos="2" Pattern=" | | | | "/>
<Row Pos="1" Pattern=" +--+ +--+--+--+ +--+--+ +--+ +--+ "/>
<Row Pos="0" Pattern=" | | | | | "/>

</Lab>

In the maze (Lab) description, in even rows, a vertical bar (|) represents a vertical wall between two adjacent cells. In
odd rows, a double minus (--) represents a horizontal wall between two adjacent cells. Also in odd rows, the plus (+)
is used to represent the central point in a square of four cells.

Any attribute can be absent, in which case a default value is assumed.

7 Simulation models

The simulator is a complex system that runs in discrete time. Some type of sensors and actuators equipping a robot
have complex real behaviour. Their simulation counterparts have, often, models that are simplified approximations.
Since these models can impact agent development they are presented next.

10 8 COMMUNICATION PROTOCOLS

Discrete time

Simulation evolves in discrete time. Robot positions are modified, simultaneously to all robots, at the beginning of the
simulation cycle. Nothing happens meanwhile.

Robot movement

Movement depends on power applied to wheels. This power differs from power order sent by agents because of motor
inertia and noise. The relation between both is given by

lOutPowt = (lOutPowt−1 + lInPowt) / 2

rOutPowt = (rOutPowt−1 + rInPowt) / 2

lNoisyOutPowt = lOutPowt * lNoiset

rNoisyOutPowt = rOutPowt * rNoiset

where,

• lInPowt and rInPowt are the power orders received by the simulator at instant t;

• lOutPowt−1 and rOutPowt−1 are the power values produced by motors at instant t−1, that is, in the previous
simulation step;

• lOutPowt and rOutPowt are the power values produced by motors at instant t, that is, in the current simulation
step;

• lNoiset and rNoiset are randomly calculated motor noise;

• lNoisyOutPowt and rNoisyOutPowt are the power values to be applied to wheels at instant t.

Movement approach implemented by the simulator decomposes it into two components, one linear along frontal axis
of the robot and one rotational around its center. The simulator applies first the linear component, then the rotational
one. These components are given by the following equations.

lint = (lNoisyOutPowt + rNoisyOutPowt) / 2

rott = (rNoisyOutPpowt - lNoisyOutPowt) / diam

where

• lint, given in um, is the linear component of the movement, at instant t;

• rott, given in radians, is the rotational component of the movement, at instant t;

• diam is the robot diameter;

The following steps are followed:

1. A new robot position is computed, based on previous equations and assuming there are no obstacles.

2. If, the new position implies a collision with an obstacle (wall), the linear component of the movement is ignored,
being only the rotational one applied,

3. Moreover, the collision sensor is activated, and the collision penalty is applied.

8 Communication Protocols

Communication between simulator and agents is based on UDP sockets, being the messages formatted into XML
structures. There are 5 message tags to consider: request for registry, grant response, refusal response, sensor data,
and actuation order. You only need to read this section if you plan to use a programming language different from C,
C++, Java or Python. Otherwise, you can use the libraries of functions available in the tool package (RobSock.h for
C/C++, ciberIF.java for Java, and croblink.py for python).

8.1 Registry 11

8.1 Registry

Each agent must register itself on the simulator by sending a request for registry message to port 6000 of the IP address
of the computer running the simulator. The message looks like

<Robot Name="name">
<IRSensor Id="sid" Angle="sangle"/>

</Robot>

where name is the robot name, the one appearing in the scoreboard, sid is the id of an obstacle sensor, ranging from
0 to 3, and sangle is the angular position of the sensor in robot periphery, ranging from -180.0 to +180.0. Tags
IRSensor are optional. You must use them if you want to change the default position of the obstacle sensors.

If the simulator refuses the request for registry it sends to the agent the message

<Reply Status="Refused"></Reply>

If the simulator accepts the request for registry it sends to the agent the message

<Reply Status="Ok">
<Parameters SimTime="time" CycleTime="time"

CompassNoise="noise" ObstacleNoise="noise" MotorsNoise="noise" />
</Reply>

where time is an integer value, representing a time, in ut, and noise is a real value, representing a noise level. The
agent must memorize the port where this response came from and send all new messages to there.

8.2 Actuating orders

At each cycle, agents can send to the simulator 1 or more actuating orders. However, the number of orders per device
is limited to one. If more than one is received, only the last one received will be considered. Each actuating order
message is a subset of

<Actions LeftMotor="pow" RightMotor="pow"
VisitingLed="act" ReturningLed="act" EndLed="act"
<SensorRequests IRSensor0="Yes" IRSensor1="Yes" · · ·

Ground="Yes" Compass="Yes"/>
</Actions>

where pow is a real value, representing a power, and act is the word "On" or "Off", representing an order to turn-on
or turn-off a led. The number of sensor requests per cycle is limited to 4 — if more are requested, only 4, arbitrarily
chosen, are considered. Motor orders are persistent, in the sense that the order is kept until a new one is received by
the simulator. Sensor requests are not persistent. If an agent wants to read the same sensors in two or more consecutive
cycles, it needs to send the sensor requests on each cycle.

8.3 Sensor data

After registration, the simulator, at every cycle, sends to the robot a message with sensor data. The message sent is a
subset of the one shown bellow, the subset depending on the sensor requests received,

<Measures Time="time">
<Sensors Compass="angle" Collision="yesno" Ground="groundid">

<IRSensor Id="0" Value="irmeasure"/>
<IRSensor Id="1" Value="irmeasure"/>
<IRSensor Id="2" Value="irmeasure"/>
<IRSensor Id="3" Value="irmeasure"/>
<GPS X="coord" Y="coord"/>

</Sensors>
<Leds EndLed="onoff" VisitingLed="onoff" ReturningLed="onoff"/>
<Buttons Start="onoff" Stop="onoff"/>

</Measures>

12 8 COMMUNICATION PROTOCOLS

where time is an integer value representing the current time, angle is a real value representing an angle, in radians,
yesno is the word "Yes" or "No", groundid is 0 if the robot is completely inside the target celland −1 otherwise,
irmeasure is a real number representing an obstacle sensor measure, coord is a real number representing a GPS
spatial coordinate and onoff is the word "On" or "Off" representing a led or button state.

	Introduction
	Simulation environment
	Robot Body
	Sensors
	Actuators
	Buttons

	Competing scenario
	Competition
	Computational structure
	Challenge
	Competition structure
	Scoring
	Ranking
	Panel of judges
	Referee
	Abnormal circumstances

	Simulation parameters
	Simulation models
	Communication Protocols
	Registry
	Actuating orders
	Sensor data

